Genome-wide survey of Arabidopsis natural variation in downy mildew resistance using combined association and linkage mapping.

نویسندگان

  • Adnane Nemri
  • Susanna Atwell
  • Aaron M Tarone
  • Yu S Huang
  • Keyan Zhao
  • David J Studholme
  • Magnus Nordborg
  • Jonathan D G Jones
چکیده

The model plant Arabidopsis thaliana exhibits extensive natural variation in resistance to parasites. Immunity is often conferred by resistance (R) genes that permit recognition of specific races of a disease. The number of such R genes and their distribution are poorly understood. In this study, we investigated the basis for resistance to the downy mildew agent Hyaloperonospora arabidopsidis ex parasitica (Hpa) in a global sample of A. thaliana. We implemented a combined genome-wide mapping of resistance using populations of recombinant inbred lines and a collection of wild A. thaliana accessions. We tested the interaction between 96 host genotypes collected worldwide and five strains of Hpa. Then, a fraction of the species-wide resistance was genetically dissected using six recently constructed populations of recombinant inbred lines. We found that resistance is usually governed by single dominant R genes that are concentrated in four genomic regions only. We show that association genetics of resistance to diseases such as downy mildew enables increased mapping resolution from quantitative trait loci interval to candidate gene level. Association patterns in quantitative trait loci intervals indicate that the pool of A. thaliana resistance sources against the tested Hpa isolates may be predominantly confined to six RPP (Resistance to Hpa) loci isolated in previous studies. Our results suggest that combining association and linkage mapping could accelerate resistance gene discovery in plants.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Association mapping for resistance to powdery mildew in oriental tobacco (Nicotiana tabaccum L.) germplasm

Powdery mildew caused by Erysiphe cichoracearum is an important fungal disease which threatens tobacco (Nicotiana tabacum L.) production. The objective of this study was to determine DNA markers linked to genomic regions associated with resistance to powdery mildew in tobacco through the association mapping approach. Seventy tobacco geno-types were fingerprinted using 26 simple se-quence repeat...

متن کامل

A Genetic Map of Lettuce (Lactuca sativa L.) with Restriction Fragment Length Polymorphism, Isozyme, Disease Resistance and Morphological Markers.

A detailed linkage map of lettuce was constructed using 53 genetic markers including 41 restriction fragment length polymorphism (RFLP) loci, five downy mildew resistance genes, four isozyme loci and three morphological markers. The genetic markers were distributed into nine linkage groups and cover 404 cM which may be 25-30% of the lettuce genome. The majority (31 of 34) of the RFLP probes det...

متن کامل

The Pattern of Linkage Disequilibrium in Livestock Genome

Linkage disequilibrium (LD) is bases of genomic selection, genomic marker imputation, marker assisted selection (MAS), quantitative trait loci (QTL) mapping, parentage testing and whole genome association studies. The Particular alleles at closed loci have a tendency to be co-inherited. In linked loci this pattern leads to association between alleles in population which is known as LD. Two metr...

متن کامل

A first linkage map and downy mildew resistance QTL discovery for sweet basil (Ocimum basilicum) facilitated by double digestion restriction site associated DNA sequencing (ddRADseq)

Limited understanding of sweet basil (Ocimum basilicum L.) genetics and genome structure has reduced efficiency of breeding strategies. This is evidenced by the rapid, worldwide dissemination of basil downy mildew (Peronospora belbahrii) in the absence of resistant cultivars. In an effort to improve available genetic resources, expressed sequence tag simple sequence repeat (EST-SSR) and single ...

متن کامل

Genome-Wide Association Mapping in Arabidopsis Identifies Previously Known Flowering Time and Pathogen Resistance Genes

There is currently tremendous interest in the possibility of using genome-wide association mapping to identify genes responsible for natural variation, particularly for human disease susceptibility. The model plant Arabidopsis thaliana is in many ways an ideal candidate for such studies, because it is a highly selfing hermaphrodite. As a result, the species largely exists as a collection of nat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 107 22  شماره 

صفحات  -

تاریخ انتشار 2010